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ABSTRACT

We present a new collocation method for the numerical solution of partial differential
equations. This method uses the Chebyshev collocation points, but because of the way the
boundary conditions are itﬁplement.ed, has all the advantages of the Legendre methods. In
particular L; estimates can be obtained easily for hyperbolic and parabolic problems.
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1 Introduction

Polynomial pseudospectral (or collocation) methods have been extensively used in the nu-
merical solutions of partial differential equations. The underlying idea in those methods is
to approximate the unknown function by an interpolation polynomial at some pre-described
(collocation) points. The polynomial is then required to satisfy the PDE at the collocation
points. This procedure yields a system of ordinary differential equation to be solved.

Historically, (see [10]) the first such points to be used were the Chebyshev collocation
points

r,-:cos(%/—) 0<;<N.

Those poiuts were cliosen because they allowed the use of Fast-Fourier-Transforms in the

computatious. 1¢ was only later (see [7]) that those points were identified with the nodes

. of the Gauss-Lobatto-Chebysher (G-L-C) quadrature formula. This observation is the key

in tue stabilit, analysis of the pseudospectral Chebyshev mstheds. The G-L-C quadrature
formula led to tLe weighted L; norm

1 g dr

L7 ==

‘iowever, it has been noted in [8] that this is not a natural norm for hyperbolic equatious.

In fact the differential equation is not well posed in this norm. Also it complicated the
stability analysis even for parabolic equatious. The theory (and therefore the confidence in
applying those meathods) is not complete.

Ouce the connection between the collocation points and the Gauss Lobatto poiuts is
established, it is natural to use the nodes of the Gauss-Lobatto- Legendre (G-L-L) quadrature
formula. We refer the reader to [2] for review of those methods. Recently {1] an O(N log N)
method was propuosed for the Legendre poiuts. The main problem with those poiuts are that
they are not given explicitly, aud their evaluation for large ¥ is not robust due to roundoff
errors.

In this paper we present a method (and name it The Chedyshev-Legendre Method) that
has the advantages of both the Chebyshev and Legendre methods. The method utilizes the
Chebyshev collocation points allowing the use of fast Fourier algorithms and avoiding the
roundoff error associated with computing the Legendre grid points. The boundary conditions
are impuosed via a new penalty technique in such a way that the method is stable in the usual
L, vorm (rather than the weighted L, norm). Henee the Chebyshev-Legendre method enjoys
the advantages of the Chebyshev method as well as those of the Legendre method.
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The implementation of the boundary conditions is done by a penalty method. A penalty

term is added to the PDE at all grid points in such a way that, in the limit of number of

grid points tend to infinity, the boundary conditions are satisfied. This procedure seems to
be better than the direct imposition of the boundary conditions, and in our case has the
extra advantage of yielding the Legendre method at the Chebyshev points.

A similar idea had been tried by Reyna [11]. The difference between his approach and
ours is in the imposition of the boundary conditions. Instead of transforming from the
Chebyshev basis to the Legeudre one as in [11], we impose the boundary conditions via
penalty method and through that automatically switch to the Legendre basis without using
it in the differentiation procedure.

The paper is organized as follows:

In Section 2 we quote the essential formulas for the use of Chebyshev and Legendre
methods.

In Section 3 we present the Chebyshev-Legendre method for hyperbolic equations. In
subsection 3.1 we describe the method and prove (in Theorem (3.1.1)) an energy estimate
to show stability. In Theorem (3.1.2) we bring another version of this energy estimate.

In subsection 3.2 we consider the relationship of the new method to the Legendre penalty
method and show that the differentiation matrices of the two methods are related via a
similarity transformation. This fact is proved in Theorem 3.2.2

In Section 4 we discuss and prove the stability of Chebyshev-Legendre method for the
hieat equation with Robin boundary conditiouns.

Section 5 coucludes the paper with some numerical experimentations with the new
method.

In future work we will report ou the couvergence results of the new method for noulinear
hyperbolic equations.

2 Preliminaries

This Section is devoted to the definitions of the pseudospectral methods to be used later. We
will discuss Chebyshev and Legendre methods which are based on the (hebysher polynomials

' Tn(t) = cos(N cos™' 2) (2.1)
and the Legendre polynomials
A I o
Pu(s) = sl - 1Y (2.2)

respectively. Associated with these two polynomials are several Gauss-type quadrature for
mulas. We will consider, in this paper, the Gauss Lobatto type formulas.
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We start by defining the Chebyshev Collocation points z; by

r;=cos(02) 0<j<N (2.3)
i N

These points are the zeroes of the polynomial (1 — 23)T() and associated with it, we have

The Gauss Lobatto Chebyshev Quadrature Formula:

Let f(r) be a polynomial of degree 2N — 1, then
N 1 _
> flaies = [ (€)1 - &) hag (24

=0

where the weight c; are given by

w - .
6 =5 12jSN-1 (2.5)
T
@@= = ON

Similarly, the Legendre Collocation points y; are defined as the roots of the polynomial
(1 = £%) P} (z). For these points we have

The Gauss Lobatto Legendre Quadrature Formula:

Let f(x) be a polynomial of degree 2N ~ I, then

N 1
3 My, = /_ tf(f)df (2.6)

=0
where the Gauss Lobatto weights w, are given by

2 . . -
w = —pPe)Pea)™ 1sisN - (27)
2

ES = R
Unlike the Chebyshev points that are known explicitly, there is no explieit formula for the
Legendre points y;, they have to be computed numerically. it is interesting though that there
is a simple forimula, easily and robustly computed, for the values of the Legendre polynomials
and their derivative at the Chebyshee points. n fact we have the following explicit formula
for Fy(«,). (taken from (4], page 180)
N-1

Pyleod) = §

Lt

(;‘;)_'_*(i)‘\’"!"‘ \ - N
m{N = | = m) cos(V 1 = 2m)d. (2.8)




¢
Pseudospectral (or Collocation) methods are based on interpolations at the poiuts a, or
;. Cousider the polynomials
. ]
Qu(x) = (I -2*)Py(2) N
. *
Qo) = (1 =) Ty(r). ”
and define the Legendre-Lagrange polynomials by o
Qulr)
hi(z) = , (2.9)
)= )
and the Chebyshev-Lagrange poiynomials by
[
Qele)
(1) = . (2.10)
9 (£ — £;)Qc(x;)
Then, the Legendre interpolation operator I, is defined by
N ]
(ILN)(E) =Y Sly;)h, () (2.11)
=0
whereas the Chebyshev interpolation operator I is defined by
N o ©
(lef}x) = 3 f(5)e5(2) (2.12)
=0
By definiticn, we have
(L) = flw) ¢
Uef)x,)) = Hay).
Froem the definidion of the interpolation operators I and le- we get the spectral differen.
tiation matrices 1. and De as follows: o
The Pseudospe: tral Logendre Differentiation Matrix Dy, is defined by
(Do), = Hyly,). (2.13) |
L
The Pseviiospectral {hebyshev Differentiation Matrix De-, is defined by
(p(‘):,i = Si;(’.e)~ 12.14)
(see (3] for explicit expressions for the matrice. A L
4
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3 Hyperbolic Equations
3.1 Scalar Hyperbolic Equation

In this Section we cousider the scalar initial-boundary value hyperbolic equation
U=U, -1<z<1 t>0 (3.1)
with the initial condition
U(z,0) = f(x) (3.2)
and the boundary condition
Ul t) =g(t) . (3.3)

The Chebyshev-Collocation (Pseudospectral) method involves seeking an Nth degree
r-polynomial ux(r,t) that satisfies

Quy(r,t)  Ouy(r,t) : .
= = <3 <N 3.
o B al r=u, 1 <j < (3.4)
with the boundary condition
ux(1,1) = ux{ra.t) = g(t) (3.5)

where £, are determined in (2.3) (£ = 1)

Note that the equation is satisfied at all the grid points except at the boundary point
r =1 where the boundary condition is satisfied.

I general, the term _.—;';u,;(x.t) is evaluated at all the grid points, with the use of either
FFT or matrix-vector multiplication using the matrix D, Equation (3.4) is then advanced
at all the grid points. The value of the solution at the boundary is then upslated using (3.5).

in [3] a penalty type method was introduced. In that approach we still use equation
{3.4) for the muer points £, 1 € 5 € N, however instead of using (3.3) for the boundary,

the fullowing equation is xatisfied

du(l.t) NN

T i Jesr = Tlusll. 1) — g{1)) \3.6)

where 1 is determined from stability considerations. In particular it bad been found that

stability follows if

v
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Equations (3.4) and (3.6) can be combined into a single equation by noting that the
collocation points x; defined in (2.3) are the zeroes of the polynomial (I — £?)Tx(z). Thus
the penalty method [5] can be written now as

Ouy{z;,t) Ouy(z,t 1+ &;)Ty(; )
e = Send - L) 1, - gt (37)

fory=0,...,N.

The main difference between the penalty method (3.7) and the usual Chebyshev method
given in (3.4) and (3.5) is that the numerical solution uy(,t) does not satisfy the boundary
condition exactly, but only in the limit as N — o0o. The boundary condition is now part of
the equation.

Another penalty method, based on the Legendre points y, is preseuted in [6]. Similar to
(2.6) we write this method as

dun(y;t) _ 6u~(:,t)l _ U+ u)Paly;)
at PP 2P (1)

for )=0,...,N.
The parameter 1 is determined by the stability requirement. Thus the differential equa-

(ux(,) — 9(t)) (3.8)

tion is satisfied at the points y;, 7 = 1,..., N. At the boundary ry = 1 one uses a combination
of the boundary condition and the differential equation.

An obvious disadvantage of the method in (3.8) is that it utilizes the Legendre points.
dowever comparing (3.7) and (3.8) shows us how to utilize the Legendre penalty method
(3.8) at the Chebyshev points.

The Chebyshev-Legendre (C-L) Method

Let £%(z) be the Legendre polynomial of degree N. In the (.L method we seek a
polynomial of degree N in r that satishies

Baslr, 1) _ Buslet), U1+ 2)0s)
T PR 2P%(1)

{uxld.t) = g(t)) (1.9

for ) =0.....N.
~ Mote that the penalt; term %ﬁﬁ is different from zero for all the Chebyshev grid
sore s r. Note also that applying (3.9) entails the use of the differentiation mateix D at the
Coogetre poiuts. In fact, given uy(r,. 1) one finds the derivative based on the Chebyshev
points, and they add the penalty term with different weights at ceveg grid point. The term
Nir,) is vealuated using the explicit forinula (2.8). This is doue once and for all for any

gnd size N,




The surprising fact is that the C-L method, though computed at the Chebyshev points,
is stable in the usual L, norm, rather than the weighted L; norm. In fact one can state

Theorem 3.1.1 :  The L, Stability of the (-L Mcthod.

let uy(r.t) be the solution of (3.9). Let w, be the weights of the Gauss Lobatto Legendre
quadrature formula and y; the nodes of the same quadrature formula. Let g(¢) = 0 in (3.3)
and (3.9), then for

1
T2 r =N(N+1)

the C-L method is stable in the L; norm. More specifically,

N N
Soudk(y i, = Y uk(y, 00, - (3.10)
=0 =0

t
[0 (1) (2wor — 1)+ ud(=1, )] dt.

Proof:
It follows from (3.9) that

duy(r.t)  Bux(r.t) _ r(l + 1) Py(r)

o or 2P (1) Dun(1,1) = gl1)). (3.11)

This is because both sides of (3.9) are polynomials of degree N that agree at ' + 1 points,
namely at the Chebyshev collocation points £,,0 < ) < N,
We now read (3.11) at the Legendre points y, to get

duxly,.t) L
% ):uuty,-f)w, }:, uxly,. ')-—-‘—‘1—-»:, - rwoud(l. 1)
;a..O )=ﬁ 'r
Since the Gauss-Lobatto-Legendre quadrature formula ix exact for polynomials of degree
2N =i it follows that

2 z ux{y;. ’)dn\(% )“’:

=0

W

1
/_ k(€ 1)ede

wlit, ) - w10

and thus the stalality estimate (3.10) follows. The Theorem is thus proven.

Note that unlike the Legeudre-Penalty method {3.5). in which oue needs to use the
Legreudre poiuts g, in the computations, these poiuts do uot appear in the compatations in

-
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the C-L method. They are just introduced for the sake of the proof. The actual computations
are done using the Chebyshev grid points z;.

An energy estimate based on the Chebyshev points ; can be derived by using (2.11) and
(2.12) as follows:

Theorem 3.1.2 :
Let
NN
Hun(, 0il* = 33 Hisun(zn thun(z,,t) (3.12)
1=01=0
with

N
Hii =Y g;(yedgnye s -
k=0

where the Chebyshev-Lagrange polynomials g;(z) are defined in (2.10).
Then uy(-,t) satisfies the energy estimate

s O = U O = [ a1, 002007 = 1) #o(-Lo0hat (313)

Proof :
Equation (3.13) is really a restatement of (3.10). Since uy(r.?) is a polvnomial of degree
N in z, it can be represented exactly by

N
u,,(:.l) = leuy = z: “N(Il't)gl('t)-

i=0

Thus

N
unly) ) = 3 unlen aly,) - (3.14)
=9

The estumate (3.13) follows from (3.10) upon substituting (3.14) for the values of u ly,. 1)
The theorem is proven.

The C.L method can be viewed from many different points of view. Theorem (31,1

shows that this wethud, iu the constant coetlicient case, is equivalent to the Legendee -

penalty method introduced in {3)

Thus the C-L method is the realization of the Legendre method at the Cheby-
shev points.

We vioue this wction by potnting out that the estimate {3137 enables one 1o pass o
ssterns easily, Artually it had been dune 0 §5). One bas to fuflow the saime steps. I s

the C.L method 1x stable for canstant coefficients systems of hvpe:bolic equations.

L
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3.2 The Differentiation Matrices

Perhaps more insight can be gained if one compares the differentiation matrix induced by
the ("-L method D¢y with the differentiation matrices induced by the Chebyshev penalty
method (3.7) D, and the Legendre penalty method (3.8) Dy

We start by noting that the differentiation matrices D and Di- defined in (2.13) and
(2.14) do not take into account any boundary conditions. The differentiation matrices in-
duced by (3.7). (3.8) and (3.9) are vartations of the basic matrices Dy and Dy:, differing only
in the method of imposing boundary condition.

Not surprisingly, Dy and D;- are similar, after all both differentiate cractly polynomials
of degree N, Since for these polvnomials, the operators [y and Ii- are the same, the matrices
Dy and D¢ represent the same operation in a different basis.  This implies a similarity

relationship. More specifically, th.s relationship can be written explicitly:

Theorem 3.2.1 ;

Let S be the matrix whose elements S, ¢ are given by
Soko= hy(re) (3.15)

where h,{r) are the Legendre-Lagrange polynomials defined in (2.9). Again r, are the
Chebyshev points.

Let 7 bLe the matrix whose elements T, are given by
Tox = a,{ue) (3.16)

where ¢, (1) the Chebyshev-Lagrange polynomiais are detined in {2.30). y; are the Legendre
collocation puints.

Then
S=T BNERYS!
and

D=SD,T ZRLY

Proof ;
Stuer 6,001 is a polynumial of degree N its given by
M :
giry = }_.g__,i_gi;hi( Y. 14,19

inty

9




Substituting £, and making use of the fact that g,(.ri) = 8,4, we get

N A
& = 3 ay(w)hi(ri) .

[£3¢]

proving that

Differentiating (3.19) we get

N '
ACESIACHL TS

=0

However hj{r) is itself a polynomial of degree ¥ and therefore it can be expressed as

N
He) =Y hj(ymYhl2),

=0

which leads to
N N

a(x) = 3 Y g, (v hi{ym )bl za)

=@ m=0
The \heorem s thus proved.
We will show uow that the differentiation matrix induced by the C-L meihod Dey is
similar to the differentiation matrix Dep induced by the Legendre penalty methad (3.8).

This will demonstrate the fact that the C-L method is the realization of the Legendre wethod

on the Chebyshev grid.

(3
Y IY 1%

Let Dy be the differentiation matrix induced by the Chebyshev Legendre method (3.9)
and Dy p the differentiation method induerd by the Legendre penalty method {3.5) they

Doy = 8D T {1.20)

whete the matrices S\ T defined in {3.15), (3.16) are the transformation matrices between
the Chebivshev points and the Legendre points.

Nute that the diferrntiation matrix Dy g is essentially the matnx Dy introduced i {2.13),

wadified to take into account the bouidary conditions, imposed via penalts w (4% Thas
{Depdi = (D = tduid;a. {3.215

10




In the same manner we can write explicitly

(1 + @) Py(zx)

(DeL)in = (De)jn =7 2P,(1)

6]"0 . (3.22)

Equation (3.22) is a direct consequence of (3.9). Note that the full first column of Dg is
modified, and not only the first element as in (3.21).

We proceed by writing explicitly the elements of the matrix SDpp7. In fact

N N
(SDLpT Yin = (SDLT )ju — 7 3. D, 0;(9)bo,b0mbu(zs).

[=0 m=0
Thus using (3.18) we get
(S’DLPT)JJ = (D(,‘)j_k ~ ng(}jo)ho(;l.'k) (3.23)

From (2.9)

oy o K ) Pry(s)
= TSR

and since yo = 2o = 1 g;(y0) = 6,0 so the right hand side of (3.23) is exactly the same as
this of (3.22).
Thus (3.20) is established. The proof is completed.

4 Parabolic Equations

In this Section we present the Chebyshev-Legendre method for the parabolic equation

ou  J*u

with Robin boundary condition

cu(l.t) + Jug(1,t)  =g*(t)
yu(—1,8) + bup(=1,t) =g7(t). (1.2)

- We will assume that a, 3, ¥ are non-negative and é is non-positive. This assures the time
decay (or non-growth) of ulr,t).

\We note that by now there is a very limited stability theory for the Chebyshey methad,

qu fact <tability had been proved first for the Dirichlet case 3 = 0, & =0, (see [7]) and then

. for Newmann case o = 4 = 0. [9]. Here we present the C-L method and prove stability for

the approximation to (4.1), (4.2) for the general Robin case.

11
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Denote by Py the finite dimensional space of polynomial of degree at most N. We define

the operator A

®
.A : PN - 'PN
by
*v(z, t)
=t : ®
Av(z,t) = 557 + R{z,t) (4.3)
where
R(z,t) = Q¥ ()[BT (1) = " ()] + 76 Q™ (2)[ B~ (1) — g™ 11)] (4.4) o
with
L4 ) Py(e
QY (x)= _(__‘_*‘__17)__5_&_2 Bt(t) = avll, t)+ guv.(1,t)
2P4(1) ‘
3 I — x)Py(r ¢
Q (x)= (—7,)——1—(—) , B7(t)= qv(=1,t) + év(=1,1).
2Py (1)
The numbers 7, 7y will be determine later to assure stability. We define aiso the following
scalar product
Y 1
N
(voudn =Y vy, )wly,)w, (4.5)
1=0
where y,,w, are the Legendre points and weights respectively.
®
The Chebyshev-Legendre Method for Parabolic Equations
We seek the polynomial of degree N in r, v(r, 1) that satisties
dve(r, 1) dofe.t) . . . L
= =g = A <3<\ .6
0 e ls=s, = B(x, 1) 0 < (4.6)
where r, are Chebyshev collucation points.
Note that again, the work iy done on the Chebyshev points r,, the penalty values Y
Qi) QL) are computed by {2.8) and are nonzero fur any r,.
To prove the stability of (4.6}, we set g* (1) = g711) = O {o the following lemma, we will
tind conditions un T and 7o such that the operator A to be semi bunnded, °
Lemina 4.1 ;
i2
®
® ® ® ® L ® L ® ®




Let v € Py and

o
H

5:,3[(1 +2k) + 2Vk + &3]

-3
l

- I s -_. 2
y ;;3[(1+2x) 2V + &3]

with & = woa/b.
Let the operator A be defined in (4.3). Then

N-1
(Av,v)n 2 Y vi(yi)ws (4.7)
j=1
provided
Tag Sto <73 (4.8)
T;is‘ S ™ S T_::'S' . (4.9)
Proof :

Since the Gauss Lobatto Quadrature formula (2.6) is exact for polynomials of degree
2N -1 and since v(z,t) is a polynomial of degree N, we have

N
—

S olmeastusde, = [ vlehver(ads

)=

o

1
= o) = o(=Doe(=1) = [ oclelole)ds

using the standard integration by parts technique.

Using again the Gauss Lobatto formula, one would get

N N -
- Z "(y;)t’r.r(y))w) = Z "’f(y))‘*') - "(l)vl( 1) + (e (=-1)
=0 =0
N1 _
= Z eg(y, e, + (4.10)
=t

e + v¥ =g = ol (1) + e(= e (1)

Thus making use of (1.10) we can write

K

Nt . )
{Av.v)y = F(lLo 3,08+ Fi- 14,08l Vi+ Z't!:{y,)w', BN
) F1°1] - .

(ﬁ).@‘._

2w,




where
F(x,a,b, k) = z(nbwy — Vo()v () + reawpv?(x) + wpvi(e). (4.12)

In order for A to be positive we need to chouse 7o and 7y such that F(1,«,4,0) and
F(-1,4,]8], N) are non-negative. For F(1,q,3,0) to be positive, we need

(To/}u)o - l)l S 407’0(03
ot
T8 fPwl — 2rowe(B + 2awp) +1 <0

Thas 7, Las to lie between the roots of the parabola described in the left hand side,
namely 755 and 775,

The same kind of consideration holds for 7y. Thus F(1,q,3,0) and F(-1,4,|6l, N) are
non-negative for the range of 7o and 7y given in (4.8) and (4.9), respectively. (4.7) follows
from (4.11).

Remarks

1. The Dirichlet boundary condition for r = 1 is obtained from (4.2) by setting a =

1,9 = 0. In this «se

+
o = 0

' =  —
w0 7
$2

which vields the condition for the penalty amplitude

1
~ _N4 ‘\r l'\4
To = 16 ( + +

- 3. The Neumann boundary coudition foi r = | correspunds to the case a = 0,3 = 1. In

this case ), = 75, vielding the condition

We are now ready to state the stability theorer for the (L methoa when applied to

paraimli«"équ.;mous with Rebin boundary conditions :

L

e o




i

Let 7, and 7y satisfy (4.8) and (4.9) respectively. Let v(z,t) € Py be the C-L approxi-
mation to u(r,t), obtained by (4.6). Assuming that g*(t) = ¢~(t) = 0, v(x,t) satisfies the
energy estimate

T N-1
(v(2:8),0(2, ) S (v(,0), vl Oy =2 [ 3 o3y, )t (4.13)

i=1

where the scalar product (f,g)n is defined in (3.5).

Proof :

Since (4.6) holds for j = G, ..., N and since v,v,; and R are polynomials of degree at most
N, we conclude that both sides of (4.6) are equal not only at the grid points but also for
every I.

dv(x, ) BPo(z,t
ot o2
where R(z,t) is defined in (4.4).
Noting the definition of A in (4.3), we get

ov
"(,-’7 = Av.

— R{x,t) -I<z<

Thus
(5, 2 = (v, Ao
Using Lemma 4.1 yields
PRRHUTRISH

1 d =
s—(v,v)n < -
2dt vt
and integration yields the stability result (4.13).

We stress again that the Legendre collocation points y, are "ghost points®, which are
never used in the computations but only in the proof of the stability. Actually we could

restate the proof in teris of the Chebyshev collocation points », as in Theorem 3.1.2,

5 Numerical Results

Case 1: Linear scalar PDE
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In this Section, we will consider some numerical examples that verify our claims stated
in previous Sections. Consider the scalar linear initial-boundary value hyperbolic PDE

U= U, -1<z2<1,t>0 (5.1)
with initial condition
U(x,0) = sin(2rkz)
and boundary condition at ¢ = 1
U(1,t) = g(t) = sin(27k(l + 1))
We seek an N degree.x-polynomial v(x,t) that satisfies
& o(zi-8) = Dol 1) = 7Q(e)o(1,1) = a(t) (52)

at Chebyshev collocation point x; = cos(7j/N), j = 0,...,N and D is the differentiation

operator (matrix).
For different construction of the Nth degree polynomial Q(), one could have different

type of boui, ary treatments. For examples,

1. if Qr) = Q%;.),;’%;(ﬂ,[) = D¢ and & = r; are the Gauss-Lobatto-Chebyshev points,

then we have the (hebyshev-Legendre method (C-L).
2. i Q(r) = (—l;%)'%)(‘:—)',n = D¢ and r = r, are the Gauss-Lobatto-Chebyshev points,
N

then we have the Chebyshev penalty method (C-P).

3. fQ(r) = —-{—}’;—’ﬁf—r— D = Dy and r =y, are the Gauss-Lobatto-Legendre poiuts, then

we have the Legendre penalty method (L-P).

Let denote vj") = v{r,.t,) and At be the time step increment, then for j = 0,0,V
we world advance the system of ODE (5.2) in time by the third order Heun Runge Kutta

scheme that has the following form :
For j =0,1,..., N, aud vio) = g{0)

n A' " "
o = e D - QU - glh))

(3 "‘3 A'
‘,‘53) - vﬁ } ([)p(“ - rQ J‘) [” g(ln) - T!}'(ln)))

-t
-
—

n ‘ LY ;
ltj ) :;vi (s 4 i"-}- (h.
Al . . Al 224,
(00 = Qe e - gty - SUE =)

6

L




@

where ¢'(1,) and g"(t.) are the derivative: of the time-dependent boundary conditions in

timeat t =1¢,,.

It has been observed before that if one inposes boutdary condition at each internediate |

4

stages of the Runge Kutta scheine, a larger time-step (CFL number) can be used. Otherwise,
CFL number has to be reduced by as much as four time for stability. In this study, we define
At =CFL/N?
The traditional way of the imposing exact boundary condition at & = | can be described L
as following :
Fory=7,...,N, and vﬁm = /(z,0)

vﬁ” = v}")-}- %EDvﬁ") *
o) = mtw%—t)
o = g(t,‘+g§—t-) (5.4)

vf"“) = :;-vﬁ") + j—:-v?) + :}%i[)v?)

v((,"“) = g(t. + At) b

However, as shown in Table | that this procedure would lead to reduction of accuracy in

time as N increases.

Table | ®

L, Error and order of accuracy for (5.4) with & = 1

N | Error Rate| Error Rate| FError Rate
16 | 0.82E-03 0.10E-03 0.29E-05 ‘
32 J0.05E-04  2.89 | 0.18E-05 291 | 0.28E-07 3.33 ®
64 | 0.42E-06 257 | 0.49E-07 2.61 | 0.T2E-00  2.64
128 { 0TE-OT 231 | 0.19E-08 233 { 0.28E-10  2.34

| CFL 3 x| {

Henee, the above procedure is modified as following (Detailed discussion and analysis L
will appear in a future paper) :
' . B i 2
For ) =0.1,..... ¥, and vi Y= (e, 0)

L J
e My
IJ = !.) +—:-;—l)l~)
17
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At
v((,t) = g(t,,)+—3—g'(t,.)

~ n | 24t
R
: 20t 2A
v = gt + 59 (t) + 50" () (5.5)
n I, 3 AL o
vﬁ R Zvy) + Zv_g” + —-4—-Dv§))
v(()?l+l) = g(tn+l )

We shall denote this procedure as (XBC). Table I iudicated that the order of time accuracy
for this procedure is third order for all N,

Table 11
L, Errcr and order of accuracy for (5.5) with &k = 1

N Error Rate{ Error Rate| Error Rate
16 | 0.77E-03 0.98E-04 0.28E-05
32 | 0.12E-04 3.00 | 0.15E-05 3.00 | 0.24E-07 3.44
64 | 0.19E-06 3.00 | 0.24E-07 3.00 | 0.37E-09 3.00
128 | 0.30E-08 3.00 | 0.37E-09 3.10 [ 0.58E-11 2.99
CFL 8 4 1

Next, using the C-L method, one get the L; error and the order of accuracy as listed in

Table 1.
Table 111

L; Error and order of accuracy for C-L method with k= 1,7 = 4wp

N Error Rate|{ Error Rate| Error Rate
16 | 0.47E-03 0.60E-04 0.28E-05
32 10.74E-05 2.99 | 0.93E-06 3.0l | 0.15E-0T 3.81
64 |0.12E-06 3.00 | 0.15E-0T 3.00 | 0.23E-09 3.00
128 | 0.18E-08 3.00 | 0.23E-09 3.00 | 0.36E-11 2.99

CFL 8 4 1 i
Table 1V
L, Ervor of (-L method for different choices of r = 2wga with k = |,OCFL = |

N 038 a=2 o= a=091} a=05

16 | 0.31E-05 | 0.28E-05 | 0.65E-05 | 0.83E-05 | 0.32F-03

32 | 0.13E-07 | 0.15E-07 | 0.15E-07 | 0.15E-07 | 0.18E-01

64 | 0.23E-09 | 0.23E-09 | 0.23E-09 | 0.23E-06 | unstable

128 [ 0.36E-11 | 0.36E-11 | 0.36E-11 | unstable | unstahle

I8
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From Table IV, we can see that for 7 < 2wp, C-L becomes unstable while for 1 > 2wy,

the convergent of the scheme confirms the theoretical prediction.

Case 2: Nonlinear scalar PDE
Consider the scalar nonlinear initial boundary value hyperbolic equation

Uy = U —2rkcos(2rk(x + t))(1 + sin(2rk(z + 1)) (5.6)
~1<e<l, t>0

with initial condition
U(z,0) = 2 + sin(2xkz)
and boundary condition at x = 1
U(l,t) = g(t) = 2+ sin(2xk(1 + t)).

This PDE has an exact solution given as {/(z,t) = 2 + sin(2xk(z + t)).

Table V
L; Error of C-L method for different choices of r = 2wpa with k = 1,¢fl =1
N a=3§ a=4 a=3 | a=25 | Exact BC
16 {0.86E-02 | 0.10E-01 | 0.18E-01 | 0.27E-01 | 0.72E-02
32 | 0.40E-07 | 0.40E-07 | 0.40E-07 { 0.11E-04 | 0.39E-07
64 | 0.68E-09 | 0.68E-09 | 0.68E-09 | unstable | 0.67E-09
| 128 | 0.11E-10 | 0.11E-10 | 0.11E-10 | unstable | 0.11E-10 |

Different values of & are also tested, similar results are obtained.
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